Module	Unit	Topics	Hrs.
10	NO.	Flectrical circuit analysis	08
	1.1	Circuit Analysis: Analysis of Circuits with and without dependent sources using generalized loop and node analysis, super mesh and super node analysis technique Circuit Theorems: Superposition, Thevenin's, Norton's and Maximum Power Transfer Theorems (Use only DC source). Magnetic circuits: Concept of Self and mutual inductances, coefficient of coupling, dot convention, equivalent circuit, solution using mesh analysis (for Two Loops only).	
2.0		Graph Theory	06
	2.1	Objectives of graph theory, Linear Oriented Graphs, graph terminologies Matrix representation of a graph: Incidence matrix, Circuit matrix, Cut-set matrix, reduced Incident matrix, Tieset matrix, f-cutset matrix.	
	2.2	KVL & KCL using matrix.	
3.0		Time and frequency domain analysis	07
3.0	3.1	Time domain analysis of R-L and R-C Circuits: Forced and natural response, initial and final values. Solution using first order and second order differential equation with step signals.	
	3.2	Frequency domain analysis of R-L-C Circuits: Forced and natural response, effect of damping factor. Solution using second order equation for step signal.	
4.0		Network functions	06
	4.1	Network functions for the one port and two port networks, driving point and transfer functions, Poles and Zeros of Network functions, necessary condition for driving point functions, necessary condition for transfer functions, calculation of residues by graphical methods, testing for Hurwitz polynomial.	
	4.2	nodes or loops)	
5.0		Two port Networks	05
	5.1	Parameters: Open Circuits, short Circuit, Transmission and Hybrid parameters, relationship among parameters, conditions for reciprocity and symmetry.	
	5.2	Interconnections of Two-Port networks T & π representation.	
6.0		Synthesis of RLC circuits	07
	6.1	Positive Real Functions: Concept of positive real function, necessary and sufficient conditions for Positive real Functions.	
	6.2	Synthesis of LC, RC & RL Circuits: properties of LC, RC & RL driving point functions, LC, RC & RL network Synthesis in Cauer-I & Cauer-II, Foster-I & Foster-II forms (Up to Two Loops only). Total	39