Module		Hrs.
01	Module: Laplace Transform Definition of Laplace transform, Condition of Existence of Laplace transform. Laplace Transform (L) of Standard Functions like e^{at} , $sin(at)$, $cos(at)$, $sinh(at)$, $cosh(at)$ and t^n , $n \ge 0$. Properties of Laplace Transform: Linearity, First Shifting theorem, Second Shifting Theorem, change of scale Property, multiplication by t , Division by t , Laplace Transform of derivatives and integrals (Properties without proof). Evaluation of integrals by using Laplace Transformation. Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.	7
02	 Module: Inverse Laplace Transform 2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace transform using derivatives. 2.2 Partial fractions method to find inverse Laplace transform. 2.3 Inverse Laplace transform using Convolution theorem (without proof). Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations. 	6
03	 Module: Fourier Series: 3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof). 3.2 Fourier series of periodic function with period 2π and 2<i>l</i>. 3.3 Fourier series of even and odd functions. 3.4 Half range Sine and Cosine Series. Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform. 	7
04	 Module: Complex Variables: 4.1 Function <i>f</i>(<i>z</i>) of complex variable, limit, continuity and differentiability of <i>f</i>(<i>z</i>)Analytic function, necessary and sufficient conditions for <i>f</i>(<i>z</i>) to be analytic (without proof). 4.2 Cauchy-Riemann equations in cartesian coordinates (without proof). 4.3 Milne-Thomson method to determine analytic function <i>f</i>(<i>z</i>)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations. 	7
05	 Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix. 5.3 Similarity of matrices, Diagonalization of matrices. Functions of square matrix 	6
06	 Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices. Module: Vector Differentiation and Integral 6.1 Vector differentiation: Basics of Gradient, Divergence and Curl (Without Proof). 6.2 Properties of vector field: Solenoidal and irrotational (conservative) vector 	6